Acta Cryst. (1979). B35, 1235-1236

The Structure of Tetrakis(thiourea) copper(I) Hexafluorosilicate

By G. W. Hunt, N. W. Terry III and E. L. Amma*
Chemistry Department, University of South Carolina, Columbia, South Carolina 29208, USA

(Received 27 November 1978; accepted 7 February 1979)

Abstract

Cu}\left[\mathrm{C}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{~S}_{4}\right\}_{2} \mathrm{SiF}_{6}, \quad 2 \mathrm{C}_{4} \mathrm{H}_{16} \mathrm{CuN}_{8} \mathrm{~S}_{4}^{+}\right.\). SiF $_{6}^{2-}$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=13 \cdot 133$ (3), $b=$ 21.186 (8), $c=12.303$ (5) $\AA, Z=4, D_{m}=1.71$ (2), $D_{c}=1.71 \mathrm{Mg} \mathrm{m}^{-3}$. Diffractometer data were used to solve and refine the structure by standard techniques to an R of 0.067 . The structure consists of isolated $\mathrm{Cu}\left[\mathrm{C}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{~S}\right]_{4}^{+}$and SiF_{6}^{2-} ions. The Cu^{1} is bonded to the S atoms of the thiourea groups producing a $D_{2 d}$ $(\overline{4} 2 m)$ distorted-tetrahedral CuS_{4} geometry. The $\mathrm{Cu}-\mathrm{S}$ distances range from $2 \cdot 319$ (5) to $2 \cdot 362$ (6) \AA.

Introduction. The reaction between Cu^{2+} and thiourea is an interesting oxidation-reduction reaction that generates a variety of Cu^{1}-thiourea metal polynuclear species (Griffith, Spofford \& Amma, 1978, and references therein) in which the degree of complexity is anion dependent. In the preparation of the dimer $\mathrm{Cu}_{2}\left[\mathrm{C}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{~S}\right]_{6}^{2+} .2 \mathrm{BF}_{4}^{-}$(Taylor, Weininger \& Amma, 1974), upon long standing in glass two other products are formed, one of which is a polymeric cluster

[^0]$\mathrm{Cu}_{4}\left[\mathrm{C}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{~S}\right]_{10}^{4+}$ (Gash, Griffith, Spofford \& Amma, 1973) and the other is the title compound. Details of this preparation will be published elsewhere (Gash, Griffith \& Amma, 1979).
The data were collected by routine methods on a Picker diffractometer at room temperature by a $\theta-2 \theta$ scan out to a maximum 2θ of 55° with Mo $K a$ radiation, $\lambda=0.71068 \AA$. The scan time for each reflection was 102 s at $0.5^{\circ} \mathrm{min}^{-1}$ and 40 s for background counting at the extremes of the scan. 3667 total reflections were measured and, of these, 2075 were retained as non-zero (two standard deviations above background). The structure was solved by straightforward Patterson and Fourier techniques and refined by a full-matrix least-squares procedure with weights based upon counting statistics (for details of computer programs, scattering factors, weighting scheme, etc., see Griffith et al., 1978; Hunt, Griffith \& Amma, 1976). The linear absorption coefficient is $1.865 \mathrm{~mm}^{-1}$. The crystal used for data collection was $0.10 \times 0.15 \times 0.25 \mathrm{~mm}$ and bounded by the faces $\{110\},\{001\},\{100\},\{120\}$, which gave minimum and

Table 1. Finat atomic positional parameters with estimated standard deviations in parentheses

	x	y	z		x	y	z
$\mathrm{Cu}(1)$	-0.2887 (2)	0.1751 (1)	0.0325 (2)	$\mathrm{N}(141)$	-0.2364 (16)	0.0217 (7)	0.0688 (16)
S(11)	-0.4416 (4)	0.1389 (3)	-0.0460 (4)	N (142)	-0.2848 (21)	0.0016 (8)	0.2412 (12)
S(12)	-0.2818 (4)	$0 \cdot 2801$ (2)	0.0897 (4)	C(21)	$0 \cdot 2260$ (16)	0.1806 (12)	0.5751 (17)
S(13)	-0.1890 (4)	0.1476 (3)	-0.1201 (4)	$\mathrm{N}(211)$	0.2308 (16)	$0 \cdot 1732$ (8)	0.4709 (15)
S(14)	-0.2469 (4)	0.1222 (3)	$0 \cdot 1934$ (4)	$\mathrm{N}(212)$	0.2322 (18)	$0 \cdot 1358$ (8)	0.6478 (15)
$\mathrm{Cu}(2)$	0.2011 (2)	0.3324 (1)	0.4890 (2)	C(22)	0.0119 (16)	0.4368 (11)	0.4676 (20)
S(21)	$0 \cdot 2097$ (5)	0.2572 (2)	0.6261 (4)	$\mathrm{N}(221)$	-0.0694 (15)	0.4669 (10)	0.5009 (15)
S(22)	0.0899 (4)	$0 \cdot 4062$ (3)	0.5654 (4)	$\mathrm{N}(222)$	0.0262 (13)	0.4325 (9)	$0 \cdot 3633$ (12)
S(23)	0.3570 (4)	$0 \cdot 3718$ (3)	0.4219 (4)	C(23)	0.4393 (15)	0.4079 (10)	0.5091 (17)
S(24)	$0 \cdot 1385$ (4)	$0 \cdot 2942$ (3)	0.3234 (4)	$\mathrm{N}(231)$	0.5180 (14)	0.4396 (11)	0.4684 (15)
Si	0.2201 (5)	0.0211 (3)	$0 \cdot 2849$ (4)	$\mathrm{N}(232)$	0.4310 (14)	0.4044 (9)	0.6152 (13)
C(11)	-0.5230 (16)	0.1126 (10)	0.0560 (18)	C(24)	$0 \cdot 0168$ (17)	0.2699 (11)	$0 \cdot 3519$ (18)
$\mathrm{N}(111)$	-0.6076 (13)	0.0806 (9)	0.0232 (13)	$\mathrm{N}(241)$	-0.0494 (14)	0.2676 (11)	$0 \cdot 2655$ (15)
N(112)	-0.5064 (13)	$0 \cdot 1202$ (8)	$0 \cdot 1585$ (8)	N (242)	-0.0188(13)	0.2566 (9)	$0 \cdot 4460$ (13)
C(12)	-0.3130 (14)	0.3269 (11)	-0.0241 (15)	F(1)	-0.2285 (10)	0.5061 (5)	$0 \cdot 3482$ (8)
$\mathrm{N}(121)$	-0.3444 (14)	0.3858 (7)	-0.0082 (13)	F(2)	$0 \cdot 2088$ (9)	0.0372 (5)	0.4177 (7)
$\mathrm{N}(122)$	-0.3074 (16)	$0 \cdot 3057$ (7)	-0.1225 (11)	F(3)	-0.3030 (18)	0.4642 (8)	$0 \cdot 1862$ (9)
C(13)	-0.0719 (16)	$0 \cdot 1889$ (9)	-0.1193 (17)	F(4)	0.3166 (10)	0.0704 (10)	$0 \cdot 2770$ (9)
N (131)	-0.0528 (13)	0.2211 (8)	-0.0288 (15)	F(5)	$0 \cdot 1387$ (11)	0.0783 (7)	$0 \cdot 2562$ (11)
N (132)	-0.0122 (12)	0.1834 (12)	-0.2005 (14)	F(6)	-0.1212 (15)	0.4713 (9)	$0 \cdot 2070$ (10)

Table 2. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Cu}(1)-\mathrm{S}(11)$	2.357 (6)	$\mathrm{S}(11)-\mathrm{Cu}(1)-\mathrm{S}(12)$	117.8 (2)
$\mathrm{Cu}(1)-\mathrm{S}(12)$	2.335 (6)	$\mathrm{S}(11)-\mathrm{Cu}(1)-\mathrm{S}(13)$	93.8 (2)
$\mathrm{Cu}(1)-\mathrm{S}(13)$	2.362 (6)	$\mathrm{S}(11)-\mathrm{Cu}(1)-\mathrm{S}(14)$	113.0 (2)
$\mathrm{Cu}(1)-\mathrm{S}(14)$	$2 \cdot 340$ (5)	$\mathrm{S}(12)-\mathrm{Cu}(1)-\mathrm{S}(13)$	116.9 (2)
$\mathrm{Cu}(2)-\mathrm{S}(21)$	$2 \cdot 323$ (5)	$\mathrm{S}(12)-\mathrm{Cu}(1)-\mathrm{S}(14)$	101.1 (2)
$\mathrm{Cu}(2)-\mathrm{S}(22)$	$2 \cdot 337$ (6)	$\mathbf{S}(13)-\mathrm{Cu}(1)-\mathbf{S}(14)$	115.1 (2)
$\mathrm{Cu}(2)-\mathrm{S}(23)$	$2 \cdot 359$ (6)	$\mathrm{S}(21)-\mathrm{Cu}(2)-\mathrm{S}(22)$	101.4 (2)
$\mathrm{Cu}(2)-\mathrm{S}(24)$	$2 \cdot 340$ (5)	$\mathrm{S}(21)-\mathrm{Cu}(2)-\mathrm{S}(23)$	116.5 (2)
		$\mathrm{S}(21)-\mathrm{Cu}(2)-\mathrm{S}(24)$	114.3 (2)
		$\mathrm{S}(22)-\mathrm{Cu}(2)-\mathrm{S}(23)$	117.0 (2)
		$\mathrm{S}(22)-\mathrm{Cu}(2)-\mathrm{S}(24)$	111.2 (2)
		$\mathbf{S}(23)-\mathrm{Cu}(2)-\mathrm{S}(24)$	97.0 (2)

maximum transmission factors of $0.954-0.969$. The structure was refined to a final conventional R of 0.067 and weighted R_{w} of 0.059 . The H atom positions were calculated and an isotropic B factor of $5.5 \AA^{2}$ was assigned to each, but neither the coordinates nor the B factors were permitted to refine. The final nonhydrogen positional and thermal parameters are given in Table 1. Table 2 contains the bond distances and angles involving non-hydrogen atoms.*

Discussion. The structure consists of isolated $\mathrm{Cu}\left[\mathrm{C}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{~S}\right]_{4}^{+}$and SiF_{6}^{2-} ions with only van der Waals contacts between them, see Fig. 1. The local environment about each Cu atom $\left(\mathrm{CuS}_{4}\right)$ is best described as a $D_{2 d}(\overline{4} 2 m)$ distortion of the idealized $T_{d}(43 m)$ (Muetterties \& Alegranti, 1970; Lippard \& Palenik, 1971) tetrahedral geometry of the closed-shell d^{10} metal ion, see Table 2. The $\mathrm{Cu}-\mathrm{S}$ distances [2.319 (5) to $2.362(6) \AA$] are those expected for this type of coordination, $\sim 0.07-0.10 \AA$ longer than in the three-coordinate planar case (Weininger, Hunt \& Amma, 1972). A glance at the $\mathrm{S}-\mathrm{Cu}-\mathrm{S}$ angles shows this distortion as a compression of the CuS_{4} tetra-

[^1]

Fig. 1. An ORTEP drawing (Johnson, 1965) of the asymmetric unit of $\left\{\mathrm{Cu}\left[\mathrm{C}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{~S}_{4}\right\} \mathrm{SiF}_{6}\right.$. The orientation of the thiourea groups is probably determined by packing considerations. Thermal ellipsoids are drawn at the 50% probability level.
hedron. The $\mathrm{Cu}-\mathrm{S}-\mathrm{C}$ angles of $104.6-112.4(8)^{\circ}$ are normal for thiourea to $\mathrm{Cu}^{1} \sigma$ donor-acceptor bonds. The $\mathrm{S}-\mathrm{C}, \mathrm{C}-\mathrm{N}$ bonds and $\mathrm{S}-\mathrm{C}-\mathrm{N}, \mathrm{N}-\mathrm{C}-\mathrm{N}$ angles are normal although the total variation is somewhat larger than expected. SiF_{6}^{2-} shows rotational motion about a $\mathrm{F}-\mathrm{Si}-\mathrm{F}$ axis as one might expect.

References

Gash, A. G., Griffith, E. A. H. \& Amma, E. L. (1979). To be published.
Gash, A. G., Griffith, E. A. H., Spofford, W. A. III \& Amma, E. L. (1973). J. Chem. Soc. Chem. Commun. pp. 256-257.
Griffith, E. A. H., Spofford, W. A. III \& Amma, E. L. (1978). Inorg. Chem. 17, 1913-1917.

Hunt, G. W., Griffith, E. A. H. \& Amma, E. L. (1976). Inorg. Chem. 15, 2993-2997.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Lippard, S. J. \& Palenik, G. J. (1971). Inorg. Chem. 10, 1322-1324.
Muetterties, E. L. \& Alegranti, C. W. (1970). J. Am. Chem. Soc. 92, 4114-4115.
Taylor, I. F. Jr, Weininger, M. S. \& Amma, E. L. (1974). Inorg. Chem. 13, 2835-2842.
Weininger, M. S., Hunt, G. W. \& Amma, E. L. (1972). J. Chem. Soc. Chem. Commun. pp. 1140-1141.

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H atom positions and additional bond distances and angles have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34262 (15 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

